May 1, 2023

May 1, 2023

May 1, 2023

Responsible Fertilizer Use for Mitigating Drought

Recently, a leading Dutch newspaper NRC published an article ''Hardly has spring started and a significant portion of European land is already parched''. This article was echood by a similar article from the BBC. How can we mitigate drought? One of the answers is responsible fertilizer use.

According to the European Drought Observatory, 23.0% of the EU-27 territory is in Warning conditions and 2.2% is in Alert conditions. Therefore, regenerative agricultural practices are increasingly becoming important. One such practice involves the responsible use of fertilizers.

In this blogpost, we'll explore how the use of fertilizers impacts the water holding capacity of soil, a crucial factor in mitigating drought, and the role of regenerative agriculture.

Synthetic vs. organic fertilizer use against drought

Synthetic fertilizer

While synthetic fertilizers can boost crop yields, their overuse can have negative consequences on soil health and water retention.

Here are 3 reasons why synthetic fertilizers exacerbate water requirements and impact drought.

1. Synthetic fertilizers require lots of water to convert.

Did you know that the most inefficient form of nitrogen for plants is nitrate? It costs a lot of energy to convert it into amino acids, which are essential for growth, and requires a lot of water. For every molecule of nitrate to convert to peptide, plants need three molecules of water. However, when the soil has a robust ecosystem of soil bacteria, the bacteria can convert atmospheric nitrogen into bacterial nitrogen, which can be easily used by plants to produce amino acids. This means that the plants do not need to rely on nitrate as much, which in turn reduces their water requirement by 30% compared to when they rely on nitrate as the primary source of nitrogen.

What other elements of synthetic fertilizer require water to convert?

Synthetic fertilizers are typically composed of different elements that all require water to some extent to be taken up by plants.


Phosphorus is an essential nutrient for plant growth, but it needs to be in a soluble form to be taken up by roots. When synthetic phosphorus fertilizers are applied to soil, they dissolve in water and can form insoluble compounds with soil minerals. This means that plants may not be able to access the phosphorus unless there is enough water in the soil to dissolve the fertilizer and make it available to plants.


Similarly, potassium is also essential for plant growth, and it is taken up by roots in a dissolved form. Therefore, synthetic potassium fertilizers need to dissolve in water to become available to plants.

2. Decline in Organic Matter:

The overuse of synthetic fertilizers may leads to a decrease in organic matter, which is crucial for water retention. Healthier soil, rich in organic matter, can hold up to 20 times its weight in water.

How does synthetic fertilizers contribute to a decrease in organic matter, which is crucial for water retention?

Synthetic fertilizers can lead to a decrease in organic matter in soil, which is crucial for water retention, for several reasons:

Synthetic fertilizers provide nutrients to plants in a form that is readily available, which means that plants can take up nutrients without the need for soil microorganisms to break down organic matter. As a result, the microbial activity in soil can decrease, and the organic matter can be depleted over time.

  • Synthetic fertilizers can also alter the soil's pH level, making it more acidic. This can affect the activity of soil microorganisms and decrease the rate at which organic matter is broken down, which can lead to a decline in soil organic matter content.

  • Synthetic fertilizers can contribute to soil erosion, which can further deplete soil organic matter.

  • This is because organic matter helps to bind soil particles together, reducing the risk of erosion.

  • The decrease in organic matter in soil can have significant consequences for water retention.

  • Organic matter acts as a sponge, holding onto water and releasing it slowly to plants over time.

  • When organic matter is depleted, the soil can become less porous and less able to hold onto water.

  • This means that water can run off more easily, leading to soil erosion, and plants may not be able to access the water they need for growth.

  • Therefore, sustainable soil management practices that prioritize soil health and organic matter content, such as regenerative agriculture, are essential to maintain water retention and ensure the long-term sustainability of agriculture.

3. Degradation of Soil Microbial Activity:

Excessive synthetic fertilizer application can disrupt the soil's microbial balance, reducing the overall health of the soil and its capacity to withstand drought conditions.

Why does synthetic fertilizer application disrupt the soil's microbial balance?

Synthetic fertilizer application can disrupt the soil's microbial balance for several reasons:

  • Synthetic fertilizers contain high levels of readily available nutrients, such as nitrogen, phosphorus, and potassium.

  • When these nutrients are applied in large amounts, they can create a temporary "feast" for soil microorganisms, leading to a rapid increase in microbial populations. However, this burst of activity can quickly deplete the available nutrients, leading to a decline in microbial activity over time.

  • Synthetic fertilizers can also lead to changes in the soil's pH level. Many soil microorganisms thrive in a neutral or slightly acidic pH range, and synthetic fertilizers can make the soil more alkaline. This can reduce the activity of some beneficial microorganisms, leading to imbalances in the soil microbial community.

  • Synthetic fertilizers can harm soil organisms directly. For example, some synthetic fertilizers contain high levels of salt, which can harm or kill beneficial soil organisms. Overuse of synthetic fertilizers can also create a toxic environment for soil organisms, reducing their activity and diversity.

  • When the balance of soil microorganisms is disrupted, it can have negative impacts on soil health, such as reduced nutrient cycling, lower organic matter content, and decreased soil water-holding capacity. This can ultimately lead to reduced crop yields and degraded soil quality.

  • Therefore, sustainable soil management practices that prioritize soil health, such as reducing synthetic fertilizer use and increasing organic matter content, are essential to promote a healthy soil microbial community and ensure the long-term sustainability of agriculture.

Organic Fertilizers

Organic fertilizers, derived from plant and animal sources, imrpove soilhealth and the water holding capacity:

  1. Enhanced Soil Structure: Organic fertilizers improve soil structure by promoting the formation of aggregates, which in turn, enhance water holding and infiltration.

  2. Increased Organic Matter Organic fertilizers contribute to the soil's organic matter content, improving its ability to hold moisture and providing a buffer against drought.

Why do Organic Fertilizers contribute to Soil Organic Matter?

Organic fertilizers contribute to the soil's organic matter content because they are derived from organic materials, such as plant or animal waste, which contain carbon and other organic compounds. When organic fertilizers are applied to soil, they provide a food source for soil microorganisms, such as bacteria and fungi, which break down the organic materials and release nutrients in a slow, steady manner. As the microorganisms consume the organic materials, they release carbon dioxide back into the atmosphere and leave behind organic matter in the soil. Over time, the accumulation of organic matter can improve soil structure, increase water-holding capacity, and promote healthy soil microbial communities. Organic matter acts like a sponge, holding onto water and releasing it slowly to plants over time. This can help soils better withstand drought conditions by retaining more water in the soil. In addition, organic fertilizers can also help improve soil health and fertility in other ways. For example, they can promote beneficial soil microbial activity, reduce soil erosion, and improve nutrient cycling.

  1. Improved Soil Microbial Activity: Organic fertilizers promote a diverse and healthy microbial community in the soil, which aids in nutrient cycling and enhances the soil's resilience to drought.

Regenerative Agriculture improves drought resilience

Regenerative agriculture offers a promising solution to the challenges of drought. By improving the water-holding capacity of soils, reducing the need for synthetic fertilizers that exacerbate the impact of drought, and increasing the resilience of crops to water stress, regenerative agriculture can help build a more sustainable and resilient food system for the future.

Use Soilbeat for successful drought mitigation

Consider SoilBeat to integrate optimized Fertilizer Management. With our software, you can easily determine the appropriate type and quantity of fertilizers for a specific crop. No longer guess what works on your land, and save money while improving your crop yields. How do you do that?

  • By easily monitoring the effect closely with soil and plant sap tests over time in our dashboards.

  • Easy direct communication with your agronomist via our platform to bring your Fertilizer Management to a next level.

Related

Related

Related

Other Articles.

Fertilizer costs SoilBeat
Fertilizer costs SoilBeat
Fertilizer costs SoilBeat

by

David Edwards

Are fertilizer costs cutting into your bottom line?

Dec 24, 2024

by

David Edwards

Advancing Precision Irrigation: Leveraging Technology for Sustainable Agriculture

Dec 24, 2024

by

David Edwards

Unlocking Agriculture’s Hidden Helpers: Microbial Genomics and the Data Challenge

Dec 9, 2024

by

David Edwards

The importance of microbial amendments: How to increase overall crop resilience

Nov 18, 2024

by

David Edwards

Unlocking Crop Potential: The Untapped Power of Plant Sap Analysis

Nov 11, 2024

by

David Edwards

Unlocking Carbon Credits: What Data Farmers Need to Track and How We Can Help

Nov 1, 2024

by

David Edwards

Enhancing Weed Management: Leveraging Data Analytics for Sustainable Agriculture

Oct 21, 2024

by

David Edwards

Elevating Crop Health with Brix Measurements: The Sweet Science of Plant Immunity

Oct 10, 2024

by

David Edwards

Nutrient Management and Disease Resistance: Unveiling the Hidden Connections Through Data Analytics

Oct 2, 2024

by

David Edwards

Base Saturation Balancing: Achieving the Ideal Ratio for Optimal Crop Production

Sep 2, 2024

by

David Edwards

How to Achieve Zero Excess Free Nitrates and Ammonium in Plant Sap Analysis

Aug 26, 2024

by

David Edwards

America's Buzzing Backbone: The Crucial Role of Migratory Beekeeping in U.S. Agriculture

Aug 19, 2024

by

David Edwards

Breaking Down Soil Biology Testing - Finding the ROI with PLFA Tests

Aug 13, 2024

by

David Edwards

Precision Agriculture: Revolutionizing Farming, One Field at a Time

Aug 5, 2024

by

David Edwards

Ag101: What is the difference between organic and regenerative agriculture?

Jul 23, 2024

by

David Edwards

Your Favourite Beans are in Danger: Threats to Coffee & Chocolate Production

Jul 5, 2024

by

David Edwards

IPM Programs: Best of the Pest Prevention Measures

Jul 4, 2024

by

David Edwards

Wet Spring Issues - Why So Irreparable?

Jul 2, 2024

by

David Edwards

The Influence of Nutrient Applications on Post Harvest

Jun 29, 2024

by

David Edwards

Orange Juice in Danger: The Threat of HLB Disease

Jun 27, 2024

by

David Edwards

California Dreaming: The Issue with Almond Production

Jun 26, 2024

by

David Edwards

Sight Unseen: Zinc Deficiency in Soil

Jun 13, 2024

by

David Edwards

Battle Beneath: Understanding Calcium - Potassium Antagonism in Soil

Jun 13, 2024

by

David Edwards

The Plant Kingdom's Power Couple: Nitrogen and Sulfur's Synergistic Symphony

Jun 13, 2024

by

David Edwards

Increase Drought Tolerance With This Commonly Missed Micronutrient

Jun 13, 2024

by

David Edwards

Digging Deeper: The Great Soil Analysis Debate for Regenerative Agriculture

Jun 13, 2024

by

David Edwards

Ammonium vs Calcium: The Nutrient Balancing Act for Thriving Plants

Jun 3, 2024

by

David Edwards

Improving Soil Structure: Boost Your Farm’s Resilience

Jun 3, 2024

by

David Edwards

Sodium and Calcium Relationship: A Tale of Frenemies in the Soil

May 20, 2024

by

David Edwards

The Soil Office: Molybdenum and Nitrate's Tumultuous Relationship

May 8, 2024

by

David Edwards

The Delicate Dance: Achieving the Perfect Nitrogen Balance for Optimal Crop Productivity

Mar 25, 2024

by

David Edwards

Paving the Way for a Regenerative Future: Insights into the "Data Driven Regenerative Ag" Project

Mar 20, 2024

by

David Edwards

Unlocking Soil's Full Potential: The Pioneering Principles of Dr. William A. Albrecht

Mar 20, 2024

by

David Edwards

The Benefits of Regenerative Agriculture for Human Health

Sep 27, 2023

by

David Edwards

Responsible Data Exchange in Agriculture

Sep 14, 2023

by

David Edwards

The Power of Healthy Soil: for a Happy World Earth Day

Apr 23, 2023

by

David Edwards

Crop Scouting for Regenerative Agriculture

Apr 14, 2023

by

David Edwards

Plantsap and Soil Analyses for Nitrogen Emission Reduction

Apr 7, 2023

by

David Edwards

How do you use Plant Nutrition for Regenerative Agriculture?

Mar 30, 2023

by

David Edwards

Profitability of Regenerative Agriculture and Transition Management

Feb 9, 2023

by

David Edwards

How can we use Data-Driven Farming for a Bright Future?

Jan 31, 2023

by

David Edwards

Plantsap Analysis for More Yield and Less Fertilizer

Jan 25, 2023